Probability for Data Science

Spring 2024

WEEK 2 STUDY GUIDE

The Big Picture

We continue to develop the basic toolkit: how to work with collections of random variables and collections of events. This gives us the tools to study some fundamentally important families of distributions.

- If events have a complicated dependence structure, you might not be able to calculate exact or even approximate chances. Sometimes the best you can do is find bounds for a chance.
- Symmetry in random permutations and simple random samples greatly simplifies calculations.
- There is a formula for the exact chance of the union of overlapping events, with a famous application.
- Distributions on a large finite number of values can be approximated by distributions on infinitely many values; a fundamentally important example of this is introduced.
- Random samples often result in random counts. The distribution of the count depends on the method of sampling.
- If the sample is a fixed number of i.i.d. success/failure trials, the distribution of the number of successes is binomial. The shape of the distribution can be understood by using consecutive odds ratios.
- In some situations, the binomial distribution is well approximated by a Poisson distribution, introduced earlier.

Week At a Glance

Mon 1/22	Tue 1/23	Wed 1/24	Thu 1/25	
	Lecture	Sections	Fri 1/26	
Lab 1 Due 5 PM Lab 2 (Due Mon 1/29)			Lecture	Mega sections
HW 1 Due 5 PM HW 2 (Due Mon 1/29)				HW 2 Party 2 PM - 4 PM
Finish working through Ch 4; 11 AM Skim Ch 5	Work through Ch 5	Finish working through Ch 5; skim Ch 6	Work through Ch 6	Fill any holes you left in
working through Ch 4-6				

Reading, Practice, and Class Meetings

Book	Topic	Lectures: Prof. A.	Sections: TAs	Optional Additional Practice
Ch 5	- 5.1: Simple bounds for chances of unions and intersections - 5.2: The exact chance of a union, overlapping or not (requires the chances of all the overlaps) -5.3: One of the most famous applications of inclusion-exclusion is to fixed points of a random permutation, also known as matches; this can be approximated by a distribution on infinitely many values - 5.4: Summary of results on symmetry in random permutations and simple random sampling	Tue 1/23 Highlights of Ch 5	Wed 1/24 - Lab 2 Part 1: a new look at the TVD - Chapter 5 Ex 9, 12 ; also 1 if there is time	$\begin{aligned} & \text { Chapter 5 } \\ & 1,5,6,10,13 \end{aligned}$
Ch 6	- 6.1: In a fixed number of i.i.d. $0 / 1$ trials, the number of successes has a binomial distribution -6.2: Examples you should read - 6.3 extends the binomial to the multinomial case where each trial has several possible outcomes - 6.4 compares the number of successes when the sampling is with replacement (binomial) and when the sampling without replacement (hypergeometric) - 6.5 uses odds ratios to study the shape of binomial histograms, and finds the mode - 6.6 uses odds ratios to show that under some conditions the binomial has a Poisson limit	Thu 1/25 Highlights of Ch 6	Fri 1/26 -Ch 6 Ex 2, 4, 10, 11	Chapter 6 $1,5,9,12$

