Data 140 Final Exam Reference Sheet				A. Adhikari		
name and parameters	values	mass function or density	cdf F or survival function	expectation	variance	mgf $M(t)$
Uniform	$m \leq k \leq n$	$1 /(n-m+1)$		$(m+n) / 2$	$\left((n-m+1)^{2}-1\right) / 12$	
Bernoulli (p)	0, 1	$p_{1}=p, p_{0}=q$		p	$p q$	$q+p e^{t}$
Binomial (n, p)	$0 \leq k \leq n$	$\binom{n}{k} p^{k} q^{n-k}$		$n p$	$n p q$	$\left(q+p e^{t}\right)^{n}$
Poisson (μ)	$k \geq 0$	$e^{-\mu} \mu^{k} / k$!		μ	μ	$\exp \left(\mu\left(e^{t}-1\right)\right)$
Geometric (p)	$k \geq 1$	$q^{k-1} p$	$P(X>k)=q^{k}$	$1 / p$	q / p^{2}	
"Negative binomial" (r, p)	$k \geq r$	$\binom{k-1}{r-1} p^{r-1} q^{k-r} p$		r / p	$r q / p^{2}$	
Geometric (p)	$k \geq 0$	$q^{k} p$	$P(X>k)=q^{k+1}$	q / p	q / p^{2}	
Negative binomial (r, p)	$k \geq 0$	$\binom{k+r-1}{r-1} p^{r-1} q^{k} p$		$r q / p$	$r q / p^{2}$	
Hypergeometric (N, G, n)	$0 \leq g \leq n$	$\binom{$ G }{$g}\binom{$ b }{$b} /\binom{N}{n}$		$n \frac{G}{N}$	$n \frac{G}{N} \cdot \frac{B}{N} \cdot \frac{N-n}{N-1}$	
Uniform	$x \in(a, b)$	$1 /(b-a)$	$F(x)=(x-a) /(b-a)$	$(a+b) / 2$	$(b-a)^{2} / 12$	
Beta (r, s)	$x \in(0,1)$	$\frac{\Gamma(r+s)}{\Gamma(r) \Gamma(s)} x^{r-1}(1-x)^{s-1}$	by uniform order statistics for integer r and s	$r /(r+s)$	$r s /\left((r+s)^{2}(r+s+1)\right)$	
Exponential $(\lambda)=$ Gamma ($1, \lambda$)	$x \geq 0$	$\lambda e^{-\lambda x}$	$F(x)=1-e^{-\lambda x}$	$1 / \lambda$	$1 / \lambda^{2}$	
Gamma (r, λ)	$x \geq 0$	$\frac{\lambda^{\prime}}{\Gamma(r)} x^{r-1} e^{-\lambda x}$	by the Poisson process, for integer r	r / λ	r / λ^{2}	$(\lambda /(\lambda-t))^{r}, t<\lambda$
Chi-square (n)	$x \geq 0$	same as gamma ($n / 2,1 / 2$)		n	$2 n$	
Normal (0,1)	$x \in \mathrm{R}$	$\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$	cdf: $\Phi(x)$	0	1	$\exp \left(t^{2} / 2\right)$
Normal (μ, σ^{2})	$x \in \mathrm{R}$	$\frac{1}{\sigma} \phi((x-\mu) / \sigma)$	cdf: $\Phi((x-\mu) / \sigma)$	μ	σ^{2}	
Rayleigh	$x \geq 0$	$x e^{-\frac{1}{2} x^{2}}$	$F(x)=1-e^{-\frac{1}{2} x^{2}}$	$\sqrt{\pi / 2}$	$(4-\pi) / 2$	
Cauchy	$x \in \mathrm{R}$	$1 / \pi\left(1+x^{2}\right)$	$F(x)=\frac{1}{2}+\frac{1}{\pi} \arctan (x)$			

- If $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. with variance σ^{2}, then $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ is an unbiased estimator of σ^{2} but $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ is not.
- For $r>0$, the integral $\Gamma(r)=\int_{0}^{\infty} x^{r-1} e^{-x} d x$ satisfies $\Gamma(r+1)=r \Gamma(r)$. So $\Gamma(r)=(r-1)$! if r is an integer. Also, $\Gamma(1 / 2)=\sqrt{\pi}$.
- If Z_{1} and Z_{2} are i.i.d. standard normal then $\sqrt{Z_{1}^{2}+Z_{2}^{2}}$ is Rayleigh. - If Z is standard normal then $E(|Z|)=\sqrt{2 / \pi}$
- The k th order statistic $U_{(k)}$ is k th smallest of $U_{1}, U_{2}, \ldots, U_{n}$ i.i.d. uniform $(0,1)$, so $U_{(1)}$ is min and $U_{(n)}$ is max. Density of $U_{(k)}$ is beta $(k, n-k+1)$.
- If S_{n} is the number of heads in n tosses of a coin whose probability of heads was chosen according to the beta (r, s) distribution, then the distribution of S_{n} is beta-binomial (r, s, n) with $P\left(S_{n}=k\right)=\binom{n}{k} C(r, s) / C(r+k, s+n-k)$ where $C(r, s)=\Gamma(r+s) /(\Gamma(r) \Gamma(s))$ is the constant in the beta (r, s) density.
- If \mathbf{X} has mean vector $\boldsymbol{\mu}$ and covariance matrix Σ then $\mathbf{A X}+\mathbf{b}$ has mean vector $\mathbf{A} \boldsymbol{\mu}+\mathbf{b}$ and covariance matrix $\mathbf{A} \Sigma \mathbf{A}^{T}$.
- If \mathbf{X} has the multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix Σ, then \mathbf{X} has density $f(\mathbf{x})=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$
- The least squares linear predictor of Y based on the $p \times 1$ vector \mathbf{X} is $\hat{Y}=\mathbf{b}^{T}\left(\mathbf{X}-\mu_{\mathbf{X}}\right)+\mu_{Y}$ where $\mathbf{b}=\Sigma_{\mathbf{X}}^{-1} \Sigma_{\mathbf{X}, Y}$. Here the ith element of the $p \times 1$ vector $\Sigma_{\mathbf{X}, Y}$ is $\operatorname{Cov}\left(X_{i}, Y\right)$. In the case $p=1$ this is the equation of the regression line, with slope $\operatorname{Cov}(X, Y) / \operatorname{Var}(X)=r \operatorname{SD}(Y) / \operatorname{SD}(X)$ and intercept $E(Y)-\operatorname{slope} E(X)$.
- If $W=Y-\hat{Y}$ is the error in the least squares linear prediction, then $E(W)=0$ and $\operatorname{Var}(W)=\operatorname{Var}(Y)-\Sigma_{Y, \mathbf{X}} \Sigma_{X}^{-1} \Sigma_{\mathbf{X}, Y}$. In the case $p=1, \operatorname{Var}(W)=\left(1-r^{2}\right) \operatorname{Var}(Y)$.
- If Y and \mathbf{X} are multivariate normal then the formulas in the above two bullet points are the conditional expectation and conditional variance of Y given \mathbf{X}.
- If Y and X are standard bivariate normal with correlation r, then $Y=r X+\sqrt{1-r^{2}} Z$ for some standard normal Z independent of X.
- Under the multiple regression model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, the least squares estimate of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}$.

