prob140.MarkovChain.distribution¶
-
MarkovChain.
distribution
(starting_condition, steps=1)[source]¶ Finds the distribution of states after n steps given a starting condition.
Parameters: - starting_condition : state or Table
The initial distribution or the original state.
- n : integer
Number of transition steps.
Returns: - Table
Shows the distribution after n steps
Examples
>>> states = make_array('A', 'B') >>> transition_matrix = np.array([[0.1, 0.9], ... [0.8, 0.2]]) >>> mc = MarkovChain.from_matrix(states, transition_matrix) >>> mc.distribution(start) State | Probability A | 0.24 B | 0.76 >>> mc.distribution(start, 0) State | Probability A | 0.8 B | 0.2 >>> mc.distribution(start, 3) State | Probability A | 0.3576 B | 0.6424