prob140.MarkovChain.steady_state¶
-
MarkovChain.
steady_state
()[source]¶ Finds the stationary distribution of the Markov Chain.
Returns: - Table
Distribution.
Examples
>>> states = ['A', 'B'] >>> transition_matrix = np.array([[0.1, 0.9], ... [0.8, 0.2]]) >>> mc = MarkovChain.from_matrix(states, transition_matrix) >>> mc.steady_state() Value | Probability A | 0.666667 B | 0.333333