prob140.Table.to_joint¶
-
Table.
to_joint
(X_column_label=None, Y_column_label=None, probability_column_label=None, reverse=True)¶ Converts a table of probabilities associated with two variables into a JointDistribution object
Parameters: - table : Table
You can either call pass in a Table directly or call the toJoint() method of that Table. See examples.
- X_column_label (optional) : str
Label for the first variable. Defaults to the same label as that of first variable of Table.
- Y_column_label (optional) : str
Label for the second variable. Defaults to the same label as that of second variable of Table.
- probability_column_label (optional) : str
Label for probabilities.
- reverse (optional) : bool
If True, the vertical values will be reversed.
Returns: - JointDistribution
A JointDistribution object.
Examples
>>> dist1 = Table().values([0,1],[2,3]) >>> dist1['Probability'] = make_array(0.1, 0.2, 0.3, 0.4) >>> dist1.to_joint() X=0 X=1 Y=3 0.2 0.4 Y=2 0.1 0.3 >>> dist2 = Table().values('Coin1',['H','T'], 'Coin2', ['H','T']) >>> dist2['Probability'] = np.array([0.4*0.6, 0.6*0.6, 0.4*0.4, 0.6*0.4]) >>> dist2.toJoint() Coin1=H Coin1=T Coin2=T 0.36 0.24 Coin2=H 0.24 0.16