Joint Distributions (prob140.JointDistribution
)
See the Joint Distribution tutorial for more information
Constucting
In [1]: from prob140 import *
In [2]: dist1_table = Table().domain([0,1],[2,3]).probability([0.1, 0.2, 0.3, 0.4])
In [3]: print(dist1_table)
X | Y | Probability
0 | 2 | 0.1
0 | 3 | 0.2
1 | 2 | 0.3
1 | 3 | 0.4
In [4]: dist1 = dist1_table.to_joint()
In [5]: print(dist1)
X=0 X=1
Y=3 0.2 0.4
Y=2 0.1 0.3
In [6]: dist2_table = Table().domain("Coin1",['H','T'],"Coin2", ['H','T']).probability(np.array([0.24, 0.36, 0.16, 0.24]))
In [7]: print(dist2_table)
Coin1 | Coin2 | Probability
H | H | 0.24
H | T | 0.36
T | H | 0.16
T | T | 0.24
In [8]: dist2 = dist2_table.to_joint()
In [9]: print(dist2)
Coin1=H Coin1=T
Coin2=T 0.36 0.24
Coin2=H 0.24 0.16
Table.to_joint ([X_column_label, …]) |
Converts a table of probabilities associated with two variables into a JointDistribution object |
Conditional Distributions